Моделирование радиационного повреждения опухолевых клеток при использовании борнитридных квантовых точек в бор-нейтронной терапии

<u>В.К. Кулик¹</u>, Е.Н. Голубева^{2,3}, Т.А. Кулагова², П.П. Кужир^{2,4}, С.А. Максименко²

¹ Белорусский государственный университет, Минск, Беларусь

² Научно-исследовательский институт ядерных проблем Белорусского государственного университета, Минск, БГУ

³ Центр физических наук и технологий, Вильнюс, Литва

⁴ Университет Восточной Финляндии, Йоенсуу, Финляндия

E-mail: uladzislau.kulik@gmail.com

Бор-нейтронная терапия (БНТ)

T. Malouff et all. Frontiers in Oncology, 2021,11:601820.

перспективный не хирургический радиотерапевтический метод лечения инвазивных злокачественных опухолей

- первичные опухоли головного мозга,
- рецидивирующий рак головы и шеи,
- 🗸 меланомы

1) пациенту вводят лекарство, определяющее локализацию опухоли, содержащее *нерадиоактивный изотоп бор-10* (¹⁰*B*), который имеет высокую склонность к захвату тепловых нейтронов. Поперечное сечение захвата тепловых нейтронов у изотопа ¹⁰B (3837 барн) во много раз больше, чем у других элементов, присутствующих в тканях.

2) пациента облучают *надтепловыми нейтронами*. После потери части энергии при проникновении в ткань нейтроны захватываются ¹⁰В с образованием ¹¹В в возбужденном состоянии, который за пикосекунды *распадается на высокоэнергетичные альфа-частицы (⁴He), ядра ⁷Li и гамма-квант* (94% случаев). Ввиду ограниченного диапазона действия (<10 мкм) эти заряженные частицы вызывают радиационно-индуцированные повреждения только в тех клетках, которые поглотили и накопили достаточное количество ¹⁰В.

Эффективность БНТ зависит от

- концентрации бора
- (~10⁹ атомов ¹⁰В на клетку)
- избирательного накопления и распределения бора именно в опухолевых клетках-мишенях.

Эффективные «носители» изотопа ¹⁰В - борнитридные наноматериалы

- бор-нитридные нанотрубки
- наноструктурированный нитрид бора
- бор-нитридные наночастицы и др.
- Цель настоящего исследования: провести теоретическую оценку нейтронной терапии по эффективности воздействия конечных продуктов реакции при использовании бор-нитридных квантовых точек (БНКТ) на примере модели клетки, мышечной ткани и клеток меланомы.

Процесс взаимодействия ионов с веществом клетки моделировали методом Монте-Карло, реализованном в программном пакете «Stopping and Range of Ion in Matter» (SRIM)

SRIM-TRIM позволяет моделировать процесс взаимодействия ионов, возникающих в реакции

 $\stackrel{10}{\longrightarrow} ^{7}Li + \alpha + 2.31 \text{ MeV}$ $\stackrel{10}{\longrightarrow} ^{7}Li + \gamma + 0.48 \text{ M}$

Взаимодействие ионов He (1.47 МэВ) и Li (840 кэВ) с однородными мышечными волокнами

Таблица 1. Рекомендуемый ICRU для моделирования элементный состав скелетных мышц

Плотность(г/см3) = 1.04 Средняя энергия возбуждения (eV) = 74.7

Элемент	Атомный номер	Массовая доля
Н	1	0.101997
С	6	0.123000
Ν	7	0.035000
0	8	0.729003
Na	11	0.000800
Mg	12	0.000200
Р	15	0.002000
S	16	0.005000
К	19	0.003000

Рисунок 1 - Взаимодействие ионов Не (1470 кэВ) с веществом скелетной мышцы (ICRU): а - траектории альфа-частиц (1470 кэВ) при их распространении в веществе скелетной мышцы, б - ионизация самой мишени при распространении альфа-частиц, в - итоговое распределение альфа-частиц в мишени

Рисунок 2 - Взаимодействие ионов Не (1470 кэВ) с веществом скелетной мышцы (ICRU): а - траектории альфа-частиц (1470 кэВ) при их распространении в веществе скелетной мышцы, б - ионизация самой мишени при распространении альфа-частиц, в - итоговое распределение альфа-частиц в мишени

Модель унифицированной клетки

гисунок *э* - Сравнение суммарного энерговыделения в ооласти ядра (а, в) и цитоплазмы (б, г) клетки в разных моделях взаимодействия ионов с веществом унифицированной клетки. (а, б) - первый тип реакции, (в, г) - второй тип реакции

Модель клеток меланомы

Рисунок 6 - Сравнение суммарного энерговыделения в области ядра (а, в) и цитоплазмы (б, г) клетки в разных моделях взаимодействия ионов с вешеством клетки меланомы. (а, б) - первый тип реакции, (в, г) - второй тип реакции

Рисунок 7 - Взаимодействие ионов Li (840 кэВ) с веществом клетки при локализации БНКТ на расстоянии 2 мкм до клетки: а - траектории ионов лития при их распространении в веществе клетки, б - ионизация самой мишени при распространении ионов лития, в - итоговое распределение ионов лития в мишени

Рисунок 8 - Взаимодействие ионов Не (1470 кэВ) с веществом клетки при локализации БНКТ на расстоянии 2 мкм до клетки: а - траектории альфа-частиц при их распространении в веществе клетки, б - ионизация самой мишени при распространении альфа-частиц, в - итоговое распределение альфа-частиц в мишени

Заключение

В работе были построены несколько моделей опухолевых клеток, различающихся между собой по нуклеоплазматическому соотношению (клетки лимфомы, меланомы, плоскоклеточной карциномы), а также проведено исследование зависимости радиационного повреждения клеток от характера распределения и локализации БНКТ (в межклеточном пространстве, в мембране, цитоплазме или ядре). В этом исследовании мы рассмотрели ионизирующую энергию, выделяемую ионами ⁴He и ⁷Li в различных областях опухолевой клетки, при этом учли, что возможны два типа реакции распада ¹¹В, образуемого при поглощении тепловых нейтронов бором-10 (⁴He²⁺(1,47 МэВ)/⁷Li³⁺(0,84 МэВ) и ⁴He²⁺(1,78 МэВ)/7Li³⁺(1,01 МэВ)). В результате моделирования определена оптимальная локализация БНКТ в опухолевых клетках в зависимости от типа опухоли, позволяющая реализовать максимальное повреждение опухолевых клеток при БНТ.